Vector Product (Cross Product) of Vectors – Class 11
Definition • Geometry • Determinant Form • Right-Hand Rule • Properties • Applications • Examples • Practice
1) Definition
The vector product (or cross product) of two vectors \(\vec{A}\) and \(\vec{B}\) is defined as
\[
\boxed{\;\vec{A}\times\vec{B} \;=\; |\vec{A}|\,|\vec{B}|\,\sin\theta \;\hat{n}\;}
\]
where
• \(\theta\) is the angle between \(\vec{A}\) and \(\vec{B}\) (\(0^\circ\leq\theta\leq 180^\circ\)),
• \(\hat{n}\) is a unit vector perpendicular to both \(\vec{A}\) and \(\vec{B}\), in the direction given by the right-hand rule.
The result is a vector.
2) Geometrical Meaning
The magnitude of the cross product represents the area of the parallelogram formed by \(\vec{A}\) and \(\vec{B}\):
\(|\vec{A}\times\vec{B}| = |\vec{A}||\vec{B}|\sin\theta\).
Hence, the area of the triangle formed by vectors \(\vec{A}\) and \(\vec{B}\) is \(\tfrac{1}{2}|\vec{A}\times\vec{B}|\).
3) Right-Hand Rule
The direction of \(\vec{A}\times\vec{B}\) is perpendicular to the plane containing \(\vec{A}\) and \(\vec{B}\).
Using the Right-Hand Rule:
- Point your right-hand fingers from \(\vec{A}\) to \(\vec{B}\) through the smaller angle.
- Your thumb points in the direction of \(\vec{A}\times\vec{B}\).
Note: \(\vec{B}\times\vec{A} = -(\vec{A}\times\vec{B})\).
4) Determinant Form (Component Formula)
If \(\vec{A}=A_x\hat{i}+A_y\hat{j}+A_z\hat{k}\) and \(\vec{B}=B_x\hat{i}+B_y\hat{j}+B_z\hat{k}\), then
\[
\vec{A}\times\vec{B} =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
A_x & A_y & A_z \\
B_x & B_y & B_z
\end{vmatrix}
\]
Expanding,
\(\vec{A}\times\vec{B} = (A_yB_z – A_zB_y)\hat{i} – (A_xB_z – A_zB_x)\hat{j} + (A_xB_y – A_yB_x)\hat{k}\).
5) Properties
- Anticommutative: \(\vec{A}\times\vec{B}=-(\vec{B}\times\vec{A})\).
- Self product: \(\vec{A}\times\vec{A}=0\).
- Distributive: \(\vec{A}\times(\vec{B}+\vec{C}) = \vec{A}\times\vec{B} + \vec{A}\times\vec{C}\).
- Scalar multiplication: \((\lambda\vec{A})\times\vec{B}=\lambda(\vec{A}\times\vec{B})\).
- Magnitude: \(|\vec{A}\times\vec{B}|=|\vec{A}||\vec{B}|\sin\theta\).
- Direction: Perpendicular to both vectors (right-hand rule).
6) Angle Between Vectors
From cross product magnitude:
\(\sin\theta = \dfrac{|\vec{A}\times\vec{B}|}{|\vec{A}||\vec{B}|}\).
Useful when dot product (cos θ) gives complementary information.
7) Applications of Vector Product
- Area of Parallelogram/Triangle: \(|\vec{A}\times\vec{B}|\), \(\tfrac{1}{2}|\vec{A}\times\vec{B}|\).
- Torque: \(\vec{\tau} = \vec{r}\times\vec{F}\).
- Angular Momentum: \(\vec{L} = \vec{r}\times\vec{p}\).
- Magnetic Force on Charge: \(\vec{F} = q(\vec{v}\times\vec{B})\).
- Normal vector to a plane: For vectors along edges, cross product gives perpendicular normal.
8) Solved Examples
Example 1: Simple Cross Product
\(\vec{A}=\langle 2,3,4\rangle,\;\vec{B}=\langle 1,-1,2\rangle.\) Find \(\vec{A}\times\vec{B}\).
\(\vec{A}\times\vec{B}=
\begin{vmatrix}
\hat{i}&\hat{j}&\hat{k}\\
2&3&4\\
1&-1&2
\end{vmatrix}\)
\(= (3\cdot2-4\cdot-1)\hat{i} – (2\cdot2-4\cdot1)\hat{j} + (2\cdot-1-3\cdot1)\hat{k}\).
\(=(6+4)\hat{i}-(4-4)\hat{j}+(-2-3)\hat{k}=10\hat{i}+0\hat{j}-5\hat{k}.\)
So, \(\vec{A}\times\vec{B}=10\hat{i}-5\hat{k}\).
Example 2: Area of Triangle
Find area of triangle with vertices O(0,0,0), A(3,1,2), B(1,4,2).
\(\vec{OA}=\langle 3,1,2\rangle,\;\vec{OB}=\langle 1,4,2\rangle.\)
\(|\vec{OA}\times\vec{OB}|=\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\3&1&2\\1&4&2\end{vmatrix}
=(1\cdot2-2\cdot4)\hat{i}-(3\cdot2-2\cdot1)\hat{j}+(3\cdot4-1\cdot1)\hat{k}\).
\(=(2-8)\hat{i}-(6-2)\hat{j}+(12-1)\hat{k}=-6\hat{i}-4\hat{j}+11\hat{k}.\)
Magnitude=\(\sqrt{(-6)^2+(-4)^2+11^2}=\sqrt{36+16+121}=\sqrt{173}\).
Triangle area=\(\tfrac{1}{2}\sqrt{173}\).
Example 3: Torque
\(\vec{r}=\langle 2,0,3\rangle \text{ m},\;\vec{F}=\langle 5,4,0\rangle \text{ N}.\) Find torque.
\(\vec{\tau}=\vec{r}\times\vec{F}=
\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\2&0&3\\5&4&0\end{vmatrix}\).
\(=(0\cdot0-3\cdot4)\hat{i}-(2\cdot0-3\cdot5)\hat{j}+(2\cdot4-0\cdot5)\hat{k}\).
\(=(-12)\hat{i}-(-15)\hat{j}+(8)\hat{k}=-12\hat{i}+15\hat{j}+8\hat{k}\) N·m.
9) Practice Questions
- \(\vec{A}=\langle 1,2,3\rangle,\;\vec{B}=\langle 4,5,6\rangle.\) Find \(\vec{A}\times\vec{B}\).
- If \(|\vec{A}|=3,\;|\vec{B}|=4,\;\theta=30^\circ\), find \(|\vec{A}\times\vec{B}|\).
- Find the area of the parallelogram with adjacent sides \(\vec{a}=\langle 2,1,0\rangle,\;\vec{b}=\langle 1,1,1\rangle\).
- Two forces \(\vec{F}_1=\langle 3,2,0\rangle,\;\vec{F}_2=\langle 1,0,4\rangle\) act at a point. Find torque about origin if position vector is \(\vec{r}=\langle 0,1,2\rangle\).
- Show that \(\vec{i}\times\vec{j}=\vec{k},\;\vec{j}\times\vec{k}=\vec{i},\;\vec{k}\times\vec{i}=\vec{j}\).
10) Answer Key (Practice)
- \(\vec{A}\times\vec{B}=\langle -3,6,-3\rangle\).
- \(|\vec{A}\times\vec{B}|=|\vec{A}||\vec{B}|\sin 30^\circ=3\cdot4\cdot\tfrac12=6\).
- \(|\vec{a}\times\vec{b}|=\sqrt{(1\cdot1-0\cdot1)^2-(2\cdot1-0\cdot1)^2+(2\cdot1-1\cdot1)^2}=\sqrt{1+(-2)^2+(1)^2}=\sqrt{6}.\)
- Torque=\(\vec{r}\times(\vec{F}_1+\vec{F}_2)=\langle 0,1,2\rangle\times\langle 4,2,4\rangle=\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\0&1&2\\4&2&4\end{vmatrix}= (1\cdot4-2\cdot2)\hat{i}-(0\cdot4-2\cdot4)\hat{j}+(0\cdot2-1\cdot4)\hat{k}=(0)\hat{i}-( -8)\hat{j}+(-4)\hat{k}=8\hat{j}-4\hat{k}.\)
- By cyclic rule of unit vectors: \(\hat{i}\times\hat{j}=\hat{k}\), etc.